

The DØ Run 2b Silicon Microstrip Tracker

APS Meeting April 5-8, 2003

Gustavo Otero y Garzon University of Illinois at Chicago-DØ

Outline

- Run 2B upgrade goals
- Why a new Silicon Detector?
- Expected performance
- Detector design
- Summary

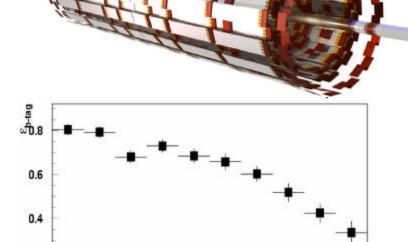
Run 2B upgrade goals

- There is a single Run 2 program that evolves as a function of Luminosity
 - Confront the standard model through precise measurements (strong interaction, quark mixing matrix, EW force, top quark...)
 - Direct search for particles and forces not yet known (Higgs, SUSY...)
- The goal of the Run 2B upgrade is to maximize this program exploiting the full potential of the Tevatron
 - Higgs observation (114 < M_H < 190 GeV)</p>
 - Top mass and properties, single Top production
 - W/Z improved measurements (M_W, effective sin²θ_W to 0.0002,...)
 - Test QCD itself, better understanding of backgrounds
 - SUSY signatures

Why a New Silicon Detector?

- Current DØ silicon tracker was built to withstand 2-4 fb⁻¹ of Integrated Luminosity
- Extended Run2 with higher Luminosity (~10 fb⁻¹ achievable)
 - Increase in integrated luminosity
 - ► Depletion voltage will exceed breakdown voltage after 2 4 fb⁻¹ for innermost layers.
 - Increase in instantaneous luminosity
 - Need of better pattern recognition (more layers of silicon)
 - Trigger upgrades
- Guiding Principles
 - Minimal cost
 - Full replacement, minimum shutdown time
 - Design must allow for assembly to be ready in 3 years

Performance of Proposed Detector

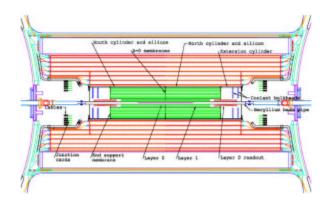


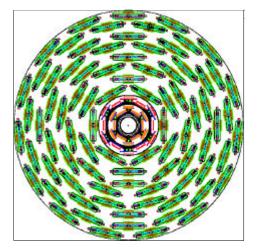
Performance studies based on full GEANT simulation

- Full model of geometry and material
- Model of noise, mean of 2.1 ADC counts (2000 e⁻, S/N~12)
- Pattern recognition and track reconstruction
- Longitudinal segmentation implemented ____
- Single hit resolution of ~11 μm

Benchmarks

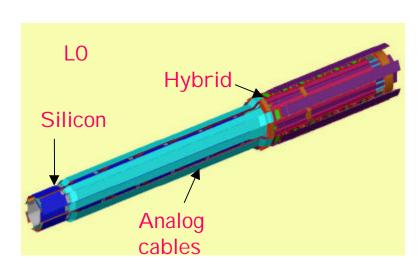
- σ(p_T)/P_T ~ 3% at 10 GeV/c
- $\sigma(d_0) < 15 \,\mu m \text{ for } p_T > 10 \,\text{GeV/c}$
- b-tagging
 - b-tagging efficiency of ~ 65% per jet

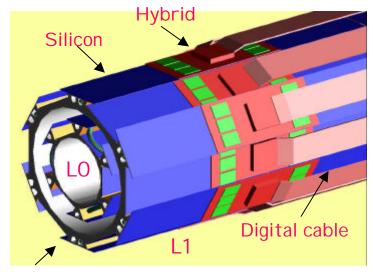




Detector Design

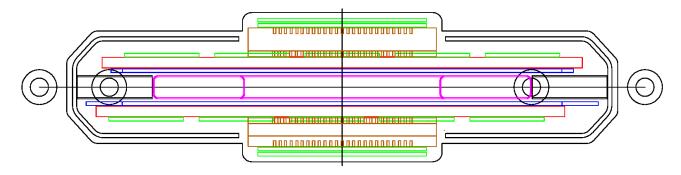
- Employ single sided silicon
 - Must be radiation-hard (up to 15 MRad)
- Six layer silicon tracker
 - ▶ 18mm < R < 164mm
 - Divided in two groups
- Spatial Considerations
 - Installation within existing fiber tracker
 - Full tracking coverage
 - Fiber tracker up to |η| < 1.6
 - Silicon stand-alone up to |η| < 2.0
- No element supported from the beam pipe
- Data Acquisition and Silicon Track Trigger
 - Retain readout system outside of calorimeter
 - Total number of readout modules cannot exceed 912





Layers 0 and 1

- Tight space, not supported by beam tube
- Minimize material
- Cool to -10 °C to increase sensor lifetime (T< -5 °C for Layer1)
- Readout electronics:
 - No hybrids mounted on sensors for L0: analogue cables
 - Mounted on Silicon in Layer 1


Carbon fiber structure

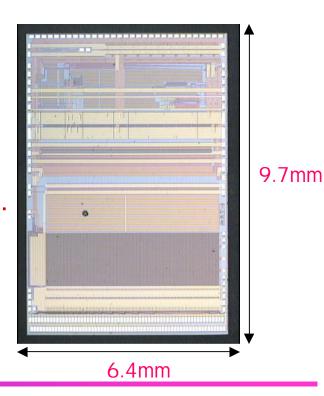
Layers 2-5: Staves

Basic building block of the outer layers is a stave

- Stave is:
 - two-layer structure of silicon sensors
 - One layer of axial only, and one layer of stereo only readout
 - Total of 168 staves
- C-shells at edge of stave provide stiffness
- Staves are positioned and supported in carbon fiber bulkheads at z = 0 and z = 605 mm.
 - Locating features on stave provide the alignment

Readout Modules (Layers 2-5)

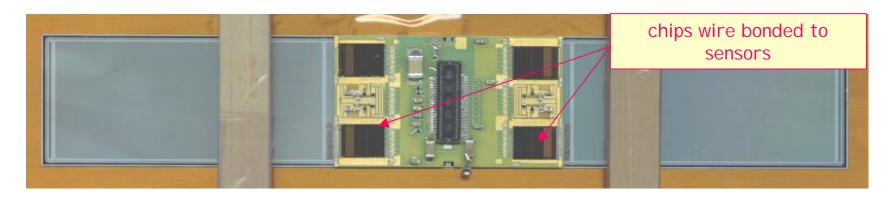
- Each stave has four readout modules
- Readout module length varies with z-position.
 - For all layers, the modules closest to z = 0 are 200 mm long
 - Those furthest from z = 0 are 400 mm long
- Four Readout module types
 - 10-10 (axial, stereo)
 - 20-20 (axial, stereo)
 - Ganged sensors will have traces aligned (sensors are 10cm long)
- Module configuration

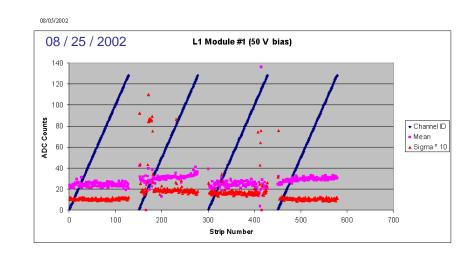


SVX4 Chip

Some SVX4 characteristics

- 0.25 μm technology, intrinsically rad-hard (>30Mrad)
- Successor of SVX2 and SVX3 chip
- Major success in commonality between CDF and DØ
- 128 inputs and 47 pipeline cells
- 8-bit ADC with sparsification /channel
- 53 MHz readout, 106 MHz digitization
- ~ 100,000 transistors
- Programmable test pattern, ADC ramp,
 preamp bandwidth, calibration, polarity...




Working Layer1 prototype

Hybrid mounted on two Layer 1 sensors

- Sigma of pedestal
 - ~ 1 ADC count (no sensor)
 - ~ 1.8 ADC counts w/ sensor (1ADC~900e⁻)
- Signal/Noise ~ 12/1

Summary

- A lean and robust Silicon Tracker has been designed to pursue the physics goals for Run IIB
- Potential for Higgs observation in Run2 at Fermilab
- Improvement in crucial measurements
 - Top, Electroweak, QCD backgrounds, SUSY signatures...
- The upgraded tracker will ensure
 - Efficient tracking in a high occupancy environment
 - Efficient tagging of heavy flavor jets
- The project has already fully working electrical modules with SVX4 readout
- Moving beyond the prototyping stage